Actinidia chinensis Planch. Improves the Indices of Antioxidant and Anti-Inflammation Status of Type 2 Diabetes Mellitus by Activating Keap1 and Nrf2 via the Upregulation of MicroRNA-424
نویسندگان
چکیده
The fruit juice of Actinidia chinensis Planch. has antioxidant and anti-inflammation properties on patients with type 2 diabetes mellitus (T2DM), but the molecular mechanism was unclear. The patients took the juice and the serum level of antioxidant miR-424, Kelch-like ECH-associated protein 1 (Keap1), erythroid-derived 2-like 2 (Nrf2), and biochemical indices were measured. The juice increased the levels of serum microRNA-424, Keap1, and Nrf2 and reduced the levels of interleukin-1 (IL-1) beta and IL-6 in T2DM patients. The levels of SOD and GSH were higher while the levels of ALT and AST were lower in the patients consuming the juice when compared to the patients without taking the juice. The Spearman rank correlation analysis showed that the serum levels of miR-424 were positively related to Keap1 and Nrf2 levels while Keap1 and Nrf2 levels were positively related to the levels of SOD and GSH and negatively related to IL-1 beta and IL-6. Thus, FJACP improves the indices of antioxidant and anti-inflammation status by activating Keap1 and Nrf2 via the upregulation of miR-424 in the patients with T2DM. This trial is registered with ChiCTR-ONC-17011087 on 04/07/2017.
منابع مشابه
Effect of Resistance and Endurance Trainings on Nrf2/Keap1 Signaling Pathway in Testicular Tissue of Type 2 Diabetic Rats
Background and purpose: The antioxidant Nrf2/Keap1 pathway prevents cellular damages against oxidative stress and this pathway is disrupted following diabetes. The aim of this study was to investigate the effect of endurance and resistance training on antioxidant Nrf2/Keap1 pathway in testicular tissue of diabetic rats. Materials and methods: In this experimental research, 48 male Wistar rats ...
متن کاملDietary Regulation of Keap1/Nrf2/ARE Pathway: Focus on Plant-Derived Compounds and Trace Minerals
It has become increasingly evident that chronic inflammation underpins the development of many chronic diseases including cancer, cardiovascular disease and type 2 diabetes. Oxidative stress is inherently a biochemical dysregulation of the redox status of the intracellular environment, which under homeostatic conditions is a reducing environment, whereas inflammation is the biological response ...
متن کاملMicroRNA-200a activates Nrf2 signaling to protect osteoblasts from dexamethasone
Treatment with dexamethasone in human osteoblasts leads to oxidative stress and cell injures. NF-E2-related factor 2 (Nrf2) is a key anti-oxidant signaling. We want to induce Nrf2 activation via microRNA-mediated silencing its suppressor Keap1. Our results show that microRNA-200a ("miR-200a") expression depleted Keap1, causing Nrf2 protein stabilization in OB-6 osteoblastic cells. Reversely, th...
متن کاملHepatoprotective Effects of Silymarin on Liver Injury via Irisin Upregulation and Oxidative Stress Reduction in Rats with Type 2 Diabetes
Background: Diabetes is one of the most prevalent metabolic diseases. Irisin (FNDC5 protein) is involved in the new strategy of combating type 2 diabetes. In the liver, the antidiabetic mechanism of silymarin at the molecular level is unknown. This study investigated the effects of silymarin on irisin and the related gene expression and oxidative stress status in the liver of type 2 diabetic ra...
متن کاملmiRNA-141 attenuates UV-induced oxidative stress via activating Keap1-Nrf2 signaling in human retinal pigment epithelium cells and retinal ganglion cells
Activation of NF-E2-related factor 2 (Nrf2) signaling could protect cells from ultra violet (UV) radiation. We aim to provoke Nrf2 activation via downregulating its inhibitor Keap1 by microRNA-141 ("miR-141"). In both human retinal pigment epithelium cells (RPEs) and retinal ganglion cells (RGCs), forced-expression of miR-141 downregulated Keap1, causing Nrf2 stabilization, accumulation and nuc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017